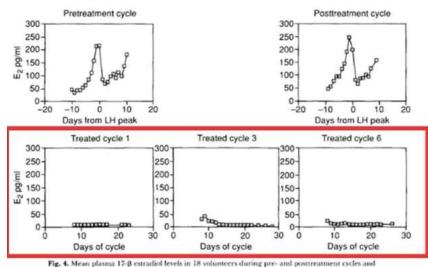
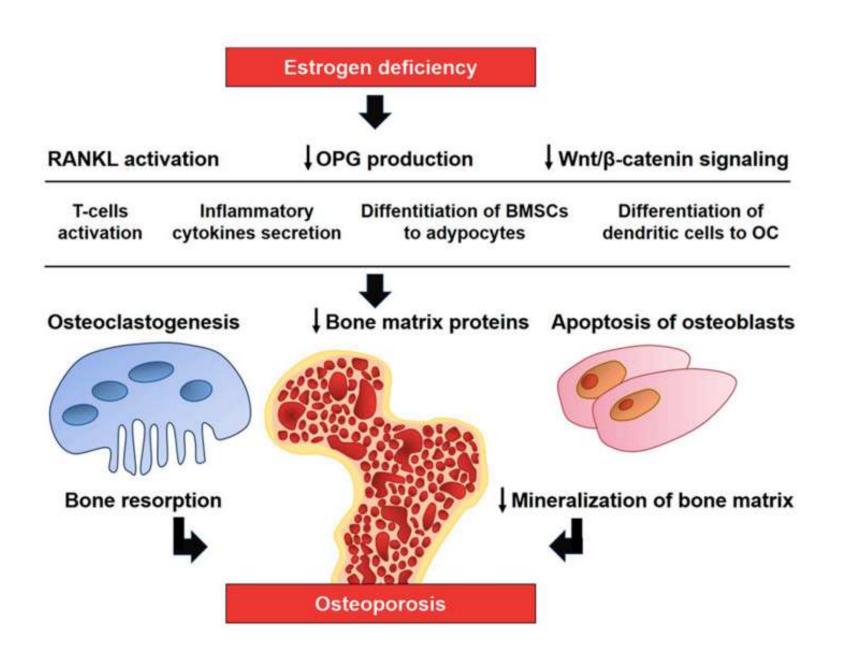
"Uso de ACO y salud ósea"

Dra. Paula Vanhauwaert Sudy
Gineco-obstetra
Académico USACH
Grupo Endocrinología ginecológica Clínica Alemana Santiago
Ex presidente SOCHEG

No declaro conflictos de interés para esta conferencia


Abreviaciones

- MAC: método anticonceptivo
- AH: MAC hormonal
- AHC: AH combinado
 - Oral, inyectable, parche, anillo
- PP: AH progestina


¿Por qué un AH puede afectar la salud ósea?

Masa ósea

- 70-80% determinada por genética
- 20-30% ambiente (hormonas (11%), tabaquismo, nutrición, sueño, carga, etc.)
- Adquisición principal durante la Etapa de fertilidad temprana
- Efecto supresor de los AH sobre el eje H-H-G

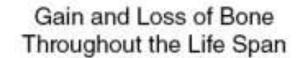
during treatment cycles 1, 3, 6 (75 µg of gestodene + 30 µg of ethinyl estradiol)

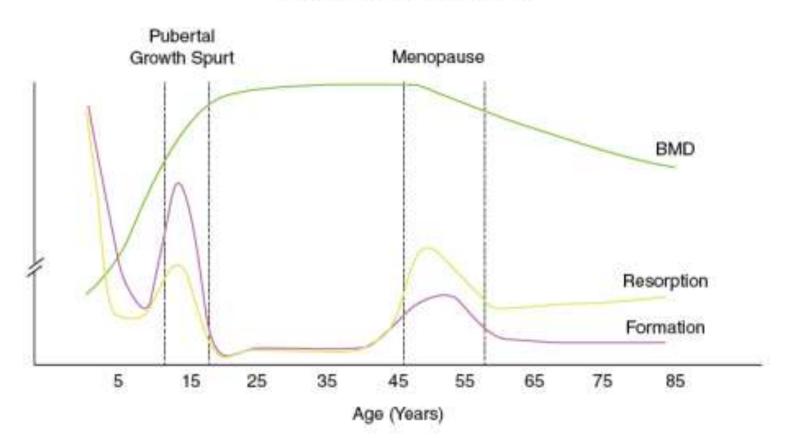
Int. J. Mol. Sci. 2023, 24(21), 15772; https://doi.org/10.3390/ijms242115772

Es distinto....

ETAPA DE LA VIDA

Adolescencia \neq Edad reproductiva \neq Transición a menopausia

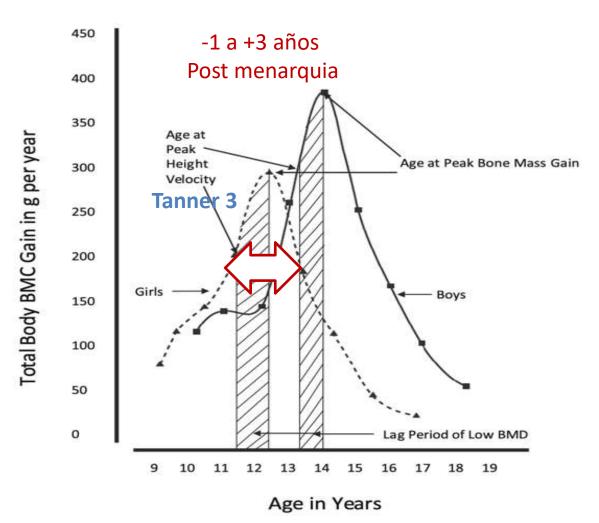

TIPO DE AH


AHC (E2 \neq E4 \neq EE) \neq PP

TIPO DE USO

MAC / tratamiento de una enfermedad

Evolución de masa ósea en ciclo vital



Kleerekoper M. Primer on the Metabolic Bone Diseases and Disorder of Mineral Metabolism, Eighth Edition. 2013 - Ch 39.

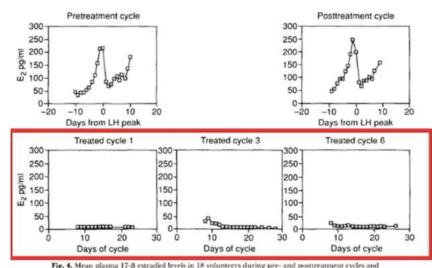
Adquisición del peak de masa ósea

Fig. 2 Peak BMC gain and peak height velocity in boys and girls from longitudinal DXA analysis. Adapted from Bailey et al. [3]

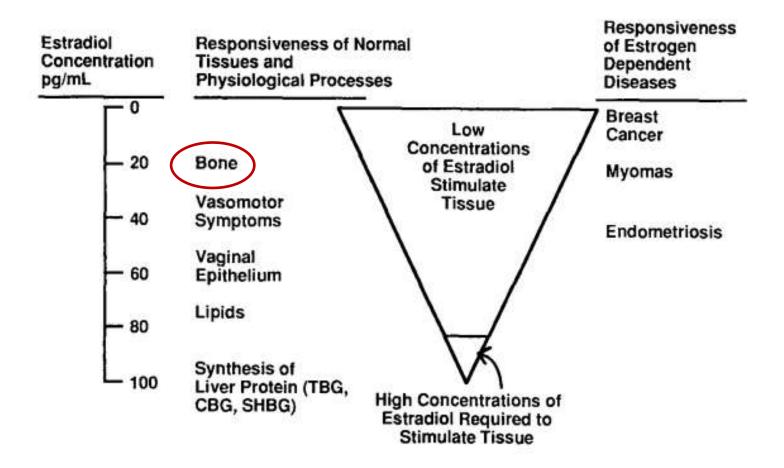
El aumento del 10% en la masa ósea durante la adolescencia, reduce potencialmente el riesgo de fractura en un 50%.

C.M. Weaver et al. The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int (2016) 27:1281–1386.

Estrógeno y metabolismo óseo


- El crecimiento, modelado y remodelado óseo son modulados por estrógenos, andrógenos, hormona de crecimiento (GH) y los factores de crecimiento similares a la insulina (IGF-1).
- En dosis bajas el estrógeno estimula la secreción de GH y así estimula la producción de IGF-1.
- La IGF-1 aumenta la formación de hueso al estimular la diferenciación de los osteoblastos.
- El estradiol inhibe la resorción ósea aumentando la apoptosis de los osteoclastos y reduciendo la apoptosis de los osteoblastos.
- En dosis crecientes el estrógeno propicia el cierre de la placa de crecimiento y disminuye la síntesis hepática de IGF-1.
- Los efectos de la progesterona han sido menos estudiados.

En la transición a la menopausia, menopausia y en estados hipoestrogénicos, el uso de un AHC es beneficioso para la adquisición/mantención de la masa ósea


AH ideal desde el punto de vista óseo

Permita ganar-mantener la masa ósea

- Antigonadotrópico, que impida el embarazo, pero no afecte el nivel de E2
- Que tenga una cantidad suficiente de estrógeno para suplir los efectos del E2

Umbral de respuesta de los tejidos al E2

Concepto de ventana terapéutica

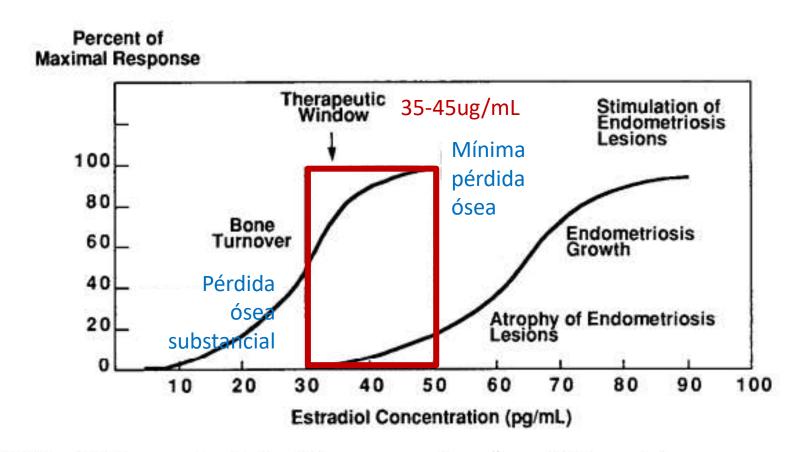


Fig. 2. Estradiol therapeutic window. The concentration of estradiol required to cause growth of endometriosis lesions may be greater than the concentration required to stabilize bone mineral density.

Las PP no aceleran la pérdida de masa ósea*

Se mantiene una producción endógena suficiente de estradiol Con el DIU – LNG incluso se ha observado mayor ganancia a la esperada

```
        Table 1
        E2 levels after treatment with different progestogens
```

```
Dienogest 37 pg/ml (Momoeda et al. [44])
Levonorgestrel 120 pg/ml (Rice et al. [45])
Etonogestrel 90 pg/ml (Beerthuizen et al. [46])
```

* DMPA 26.6 pg/ml (Miller et al. [47]) and 25.6 pg/ml and 35.1 pg/ml (Walsh et al. [28])

```
Drospirenone 48.7 pg/ml (Duijkers et al. [50])
```

Desogestrel 54.4 pg/ml (Rice et al. [51])

DMPA afecta negativamente la DMO con el uso prolongado 2-4 años. La pérdida es recuperable post suspensión. No es 1ª elección

¿Qué pasa con progestinas solas?

- Las píldoras de gestágenos son anovulatorias aprox. en el 40% de los ciclos
- La DMPA es el gestágeno puro con mayor dosis.
- Es el único AH que ha demostrado afectar negativamente la DMO con el uso prolongado 2-4 años
- La pérdida es recuperable post suspensión
- Hoy no hay recomendación de limitar su uso, pero no es de primera elección
- Aumentar ingesta de calcio.

American Journal of Obstetrics and Gynecology

Volume 114, Issue 7, 1 December 1972, Pages 923-928

Serum estradiol in women ingesting combination oral contraceptive steroids *

<u>Daniel R. Mishell Jr. M.D.</u> , <u>Ian H. Thorneycroft Ph.D.</u>, <u>Robert M. Nakamura Ph.D.</u> <u>Yukihiro Nagata M.D.</u>, <u>Sergio C. Stone M.D.</u>

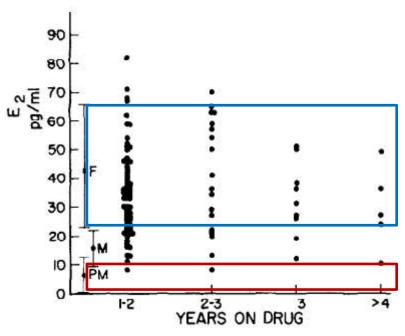


Fig. 4. Serum estradiol values in 97 women who had been ingesting oral contraceptives for 1 to 6 years. The mean plus and minus the standard deviation of the values found in the early follicular phase of the menstrual cycle (F), in men (M), and in postmenopausal women (PM) are also represented.

Impacto óseo de los anticonceptivos hormonales, evidencia

- Cochrane RS 2014
 - 19 RCT
 - Evalúan distintas formulaciones PP y AOC
 - DMO y parámetros bioquímicos.
 - Sin impacto sobre masa ósea.
- Cochrane RS 2015
 - 7 casos control y 7 cohorte
 - Evalúan AOC, MPA y SIU
 - Baja asociación con riesgo de fractura en subgrupos especiales (usuarias por más de 10 años; antecedente de fractura previa)
 - Variación de la masa ósea, pese a ser estadísticamente significativa es clínicamente no fue significativa (menos 3%).

DOI: 10.1111/cen.13932

REVIEW ARTICLE

WILEY

Adolescent use of combined hormonal contraception and peak bone mineral density accrual: A meta-analysis of international prospective controlled studies

```
Azita Goshtasebi<sup>1,2</sup> | Tatjana Subotic Brajic<sup>1</sup> | Delia Scholes<sup>3</sup> |
Tamara Beres Lederer Goldberg<sup>4</sup> | Abbey Berenson<sup>5</sup> | Jerilynn C. Prior<sup>1,2,6</sup> •
```

8 estudios prospectivos controlados => 1año / 5 => 2 años Usuarias AHC vs no usuarias (subgrupos)

DMO

- -0.02 (95% IC: -0.05 a -0.00) g/cm2/año (P = 0.04) heterogeneidad 96%
- -0.02 (95% IC: -0.04 a -0.01) g/cm2/2años (P < 0.01) heterogeneidad 85%

Características de los estudios

TABLE 1 Descriptive characteristics of studies included in the primary pooled analyses of prospective studies of adolescent women and areal bone mineral density (BMD) change by use of combined hormonal contraceptives (CHC) or not

	D!	Study design	Age range (y)	BMD site	Number of participants		Total
	Region and year			measurement (s)	CHC	Control	Total duration (mo)
Cromer ²¹	USA 1996	Prospective comparative study	12-21	Spine	9	17	12
Lara-Torre ²²	USA 2004	Non-randomized prospective study	11-21	Spine	16	10	12
Berenson ^{16,a}	USA	Prospective controlled study	Subgroup:	Spine	36	14	12
	2008		16-19 (total: 16-33)	Femoral neck Total hip	29	8	24
Cromer ^{15,a}	USA	Prospective controlled study	12-18	Spine	62	95	12
2008			Femoral neck	62	95	24	
Scholes ^{19,a}	USA	Prospective controlled study	Subgroup:	Spine	115	75	12
	2011		14-18 (total: 14-30)	Total hip Whole body	93	55	24
Gai ^{24,a,b}	China	Open-label randomized compara-	16-18	Spine	277	136	12
	2012	tive trial of two CHC agents with non-randomized controls ^c		Femoral neck	261	115	24
Biason ²⁰	Brazil 2015	Prospective controlled study	12-19	Spine Whole body	26	35	12
Gersten ^{23,b}	USA 2016	Open-label randomized, compara- tive trial of two CHC agents with non-randomized controls ^c	12-18	Spine Total hip	240	372	12
Brajic ^{3,a}	2017 Canada	Prospective, population-based cohort	Subgroup: 16-19 (total: 16-24)	Spine Femoral neck Total hip	113	54	24

alncluded in 24-mo comparison.

^bThe two CHC arms in these studies were randomized and blinded, but the controls were open-label and nonrandomized.

^cThis randomized controlled trial compared the two CHC groups but had a nonrandomized control group thus it became a prospective observational study

AHC y diferencia en la masa ósea a 1 año

	Exp	eriment	al	(Control			Mean difference		Mean difference
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Cromer	0.016	0.055	9	0.015	0.041	17	9.4%	0.00 [-0.04, 0.04]	1996	
Lara-Tore	0.013	0.034	16	0.023	0.036	10	11.4%	-0.01 [-0.04, 0.02]	2004	
Cromer'	0.02	0.056	62	0.04	0.04	95	12.9%	-0.02 [-0.04, -0.00]	2008	-
Berenson	0.008	0.042	36	0.011	0.032	14	12.3%	-0.00 [-0.02, 0.02]	2008	-
Scholes	0.007	0.041	115	0.008	0.014	75	13.6%	-0.00 [-0.01, 0.01]	2011	+
Gai	-0.01	0.027	277	0.01	0.035	136	13.7%	-0.02 [-0.03, -0.01]	2012	*
Biason	-0.01	0.03	26	0.104	0.03	35	13.0%	-0.11 [-0.13, -0.10]	2015	-
Gersten	0.015	0.06	240	0.026	0.036	372	13.6%	-0.01 [-0.02, -0.00]	2016	*
Total (95% CI)			781			754	100.0%	-0.02 [-0.05, -0.00]		•
Heterogeneity: $\tau^2 = 0$.00; X2=	175.38	df = 7	(P < 0.0)	00001):/	r = 969	6		-	de als desales
Test for overall effect				No.			1720			-0.1 -0.05 0 0.05 0.1 CHC users non-CHC users

FIGURE 2 This random-effects forest plot assessed the 12-mo weighted mean difference in mean absolute change from baseline in g/cm for spinal areal bone mineral density (BMD) in adolescent-combined hormonal contraceptives (CHC) users and nonusers/controls [Colour figure can be viewed at wileyonlinelibrary.com]

AHC y diferencia en la masa ósea a 2 año

	Expe	eriment	al	C	ontrol			Mean difference		Mean difference
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Cromer*	0.02	0.023	62	0.06	0.025	95	26.2%	-0.04 [-0.05, -0.03]	2008	•
Berenson	-0.039	0.29	29	0.032	0.02	8	1.6%	-0.07 [-0.18, 0.04]	2008 -	
Scholes	0.011	0.037	93	0.0216	0.032	55	23.9%	-0.01 [-0.02, 0.00]	2011	•
Gai	-0.01	0.027	261	0.019	0.035	115	26.5%	-0.03 [-0.04, -0.02]	2012	•
Brajic	0.002	0.035	113	0.011	0.047	54	21.9%	-0.01 [-0.02, 0.01]	2017	•
Total (95% CI)			558			327	100.0%	-0.02 [-0.04, -0.01]		•
Heterogeneity: τ²= 0	0.00; X2=	26.29,	df = 4 (P < 0.000	1); /2 = 1	35%				14 005 0 005 04
Test for overall effect			1-10:9 (AV)		55					-0.1 -0.05 0 0.05 0.1 CHC users non-CHC users

FIGURE 3 This random-effects forest plot assessed the 24-mo weighted mean difference in mean absolute change from baseline in g/cm² for spinal areal bone mineral density (BMD) in adolescent-combined hormonal contraceptives (CHC) users and nonusers/controls [Colour figure can be viewed at wileyonlinelibrary.com]

¿Qué pasa con la dosis?

ESTUDIO	COMPARACIÓN	POBLACIÓN	OUTCOME	RESULTADO
ENDRIKA T 2004	20ug EE + LNG 100ug 30ug EE + LNG 150ug	100 mujeres sanas 36 ciclos	DMO columna lumbar L- telopéptidos	Sin diferencia
Gargano 2008	30ug EE + DRSP 3mg 20ug EE + DRSP 3mg	44 mujeres 21-34 años 12 meses	DMO columna Marcado	n diferencia minución mbos grupos
Paoletti 2000	20ug EE + GSD 75ug 30ug EE + GSD	Discordar	sorción (osteocalcina, piridinolina, deoxipiridinolina)	Sin diferencia significativa
Cibula 2012	gue	nujeres 15 a 19 años 18 meses	DMO y marcadores	Descenso de la DMO con AOC 15ug
Gersten 2016	20ug EE + LNG 100ug 21/7 30ug EE + LNG 150ug 84/7	829 mujeres 12 – 18 años 12 meses	DMO	Menor ganancia de masa ósea con 20ug EE

CrossMark

ORIGINAL ARTICLE

Oral contraceptive use and fracture risk—a retrospective study of 12,970 women in the UK

S. Dombrowski 1 · L. Jacob 2 · P. Hadji 3 · K. Kostev 1

Restrospectivo

Usuarias AHC vs nunca usuarias

Edad 18 – 55 años, promedio 37 años, 34% 46-55 años

Cualquier fractura

ORIGINAL ARTICLE

Oral contraceptive use and fracture risk—a retrospective study of 12,970 women in the UK

S. Dombrowski 1 · L. Jacob 2 · P. Hadji 3 · K. Kostev 1

Odds ratio (95% CI) ^b	p value
0,81 (0,74 – 0,90)	< 0.001
1.66 (1.49-1.84)	< 0.001
1.26 (1.11-1.47)	< 0.001
2.28 (1.64-3.16)	< 0.001
1.35 (1.04-1.79)	0.026
1.93 (1.13-3.31)	0.017
1.40 (1.00-1.96)	0.049
1.31 (1.12-1.55)	0.001
	0,81 (0,74 - 0,90) 1.66 (1.49-1.84) 1.26 (1.11-1.47) 2.28 (1.64-3.16) 1.35 (1.04-1.79) 1.93 (1.13-3.31) 1.40 (1.00-1.96)

^a Only co-variables with significant effect are displayed

b Logistic regression model adjusted for smoking status, BMI, diagnosis of alcohol abuse, diabetes (%), bone density disorder, dementia/Alzheimer's, thyroid disorder, anorexia nervosa, premature menopause, epilepsy, endometriosis, and corticosteroid treatment

ORIGINAL ARTICLE

Oral contraceptive use and fracture risk—a retrospective study of 12,970 women in the UK

S. Dombrowski 1 · L. Jacob 2 · P. Hadji 3 · K. Kostev 1

Patient age	Duration of OC use	Odds ratio (95% CI) ^a	p value
Age 18–25	Total	0.62 (0.48-0.79)	< 0.001
	≤I year	0.76 (0.57-1.03)	0.073
	2-3 years	0.61 (0.45-0.82)	0.001
	4-5 years	0.45 (0.30-0.67)	< 0.001
	>5 years	0.31 (0.15-0.65)	0.002
Age 26-35	Total	0.65 (0.52-0.81)	< 0.001
	≤1 year	0.83 (0.62-1.09)	0.181
	2-3 years	0.62 (0.46-0.83)	0.001
	4-5 years	0.71 (0.50-1.00)	0.053
	>5 years	0.44 (0.32-0.61)	< 0.001

Age 36-45	Total	0.85 (0.70-1.04)	0.123
	≤l year	0.90 (0.69-1.17)	0.437
	2-3 years	0.95 (0.72-1.24)	0.686
	4-5 years	0.97 (0.67-1.39)	0.849
	>5 years	0.67 (0.50-0.89)	0.006
Age 46-55	Total	1.00 (0.85-1.17)	0.980
	≤1 year	1.04 (0.86-1.26)	0.683
	2-3 years	0.98 (0.77-1.26)	0.878
	4-5 years	1.00 (0.71-1.40)	0.989
	>5 years	0.89 (0.65-1.21)	0.440

Oral-contraceptive use and risk of hip fracture: a case-control study

Karl Michaëlsson, John A Baron, Bahman Y Farahmand, Ingemar Persson, Sverker Ljunghall

Restrospectivo
Usuarias AHC vs nunca usuarias
Edad 50 a 81 años
Fractura de cadera

	Numbe	r of	Age-adjusted odds ratio (95% CI)	Multivariate	
	Cases	Controls		odds ratio (95% CI)*	
Use of contraceptives	2002	980		08	
Never	994	2373	1.00†	1-00†	
Ever (any type)	130	562	0-75 (0-60-0-95)	0.75 (0.59-0.96)	
High-dose ever-use	77	456	0-54 (0-40-0-72)	0.56 (0.42-0.75)	

^{*}Adjusted for age (50–54, 55–59, 60–64, 70–74, ≥75 years), hormone-replacement therapy (never, former, and current use), parity (0, one, two, or three children or more), body-mass index (by quintiles). †Reference category.

Table 2: Odds ratios of hip fracture associated with use of oral contraceptives

Las usuarias > 40 años tuvieron una disminución del riesgo OR 0,69

Las usuarias de < 30 años No tuvieron diferencia significativa

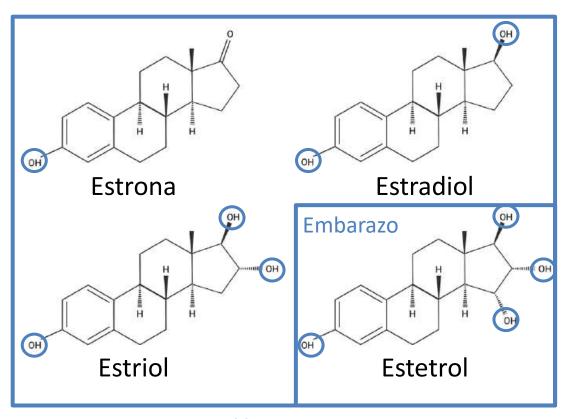
	Numbe	r of	Age-adjusted	Multivariate	
	Cases	Controls	odds ratio (95% CI)	odds ratio (95% CI)*	
Age at use of any ora	contraceptive				
Never used	994	2373	1.00‡	1.00‡	
<30 years	34	193	1-11 (0-68-1-82)	1.26 (0.76-2.09)	
30-39 years	60	294	0-80 (0-57-1-12)	0-82 (0-57-1-16)	
≥40 years	64	271	0.72 (0.54-0.98)	0-69 (0-51-0-94)	
Age at use of high-do	se oral contrace	ptive †	4. 7	(**	
Never used	994	2373	1.00‡	1-00‡	
<30 years	27	183	0.97 (0.56-1.68)	1-12 (0-64-1-97)	
30-39 years	46	264	0.74 (0.50-1.08)	0.76 (0.51-1.13)	
≥40 years	40	215	0.62 (0.43-0.90)	0.61 (0.42-0.89)	

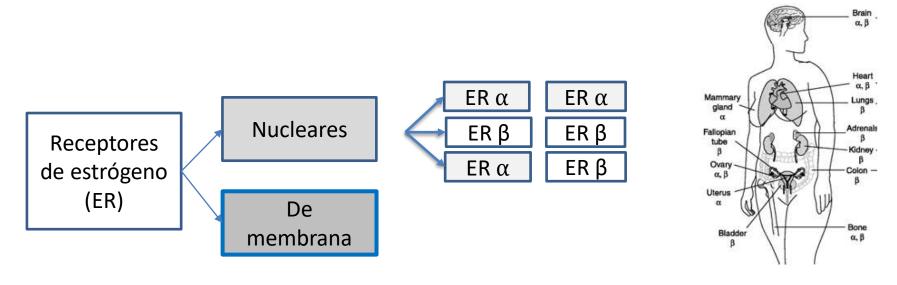
^{*}Adjusted for age (50–54, 55–59, 60–64, 70–74, ≥75 years), hormone-replacement therapy (never, former, and current use), parity (0, one, two, or three children or more), body-mass index (by quintiles). †Also adjusted for use of other categories of age at use. ‡Reference category.

Table 3: Odds ratios of hip fracture associated with age at oral contraceptive use

Nuevas formulaciones anticonceptivas

Estradiol 1,5mg + NOMAC 2,5mg


Estradiol 3 -> 1mg + DNG 2 -> 3mg Estetrol 14,2mg + DRSP 3 mg


Origen y estructura

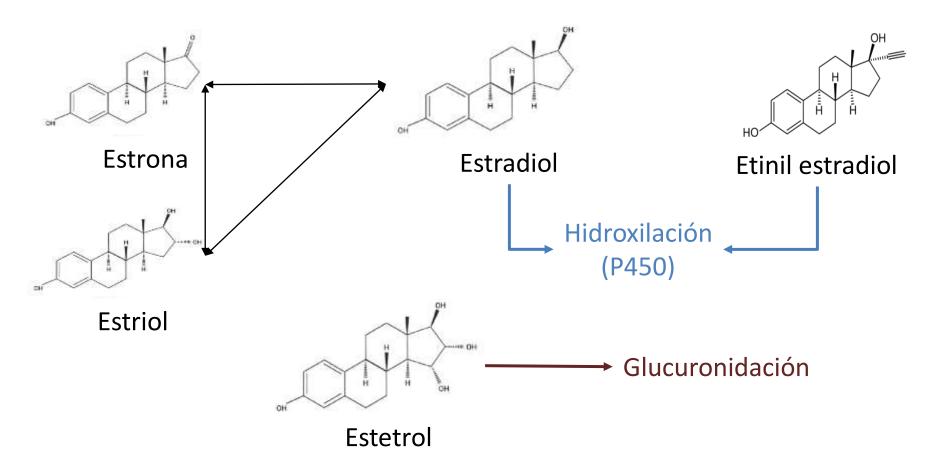
Etinil estradiol
Usuari@ de fármacos

Humanos

Afinidad/selectividad por receptores

	RE α [IC 50 (nM)]	Afinidad relativa RE α (%)	RE β [IC 50 (nM)]	Afinidad relativa RE β (%)	Afinidad RE α / Afinidad RE β
Estrona	112,2	10	446.7	2	5
Estradiol	11,2	100	8.9	100	1
Estriol	100	11	25,1	35	0,3
Estetrol	281,8	4	354,8	3	1,3
Etinil estradiol	5,6	200	15,9	56	3,6

doi: 10.1210/en.2006-0113


Efectos sobre otras proteínas hepáticas

Potencia	FSH	CBG	SHBG	Angiotensinógen
				О
Estradiol	1	1	1	1
Etinil estradiol	120	500	600	350

Guengerich FP. Life Sci 1990;47:1981-8; Lobo RA & Stanczyk FZ., Am J Obstet Gynecol 1994;170:1499₂ 507; Mashchak CA et al. Am J Obstet Gynecol 1982;144:511-8

Ciclo 6	media % cambio sobre basal (min – max)						
CICIO 6	CBG	SHBG	Angiotensinógeno				
E4 + DRS	40 (-27, 142)	55 (-22, 171)	75 (-26, 198)				
EE + LNG	152 (65, 354)	74 (-17, 261)	170 (39, 853)				
EE + DRSP	140 (65, 448)	251 (122, 637)	206 (103, 413)				

Metabolismo

Niveles plasmáticos de E2

E2/NOMAC

Concentración media: 50 pg/ml

Concentración máxima: 90 pg/ml

E2V/DNG

Concentración media (2mgE2V+3mg DNG): 51,6 pg/ml

Concentración máxima: 66 pg/ml

Effects on bone mineral density of a monophasic combined oral contraceptive containing nomegestrol acetate/17βestradiol in comparison to levonorgestrel/ethinylestradiol

TERJE SØRDAL, PAUL GROB, CAROLE VERHOEVEN

First published: 04 July 2012 | https://doi.org/10.1111/j.1600-0412.2012.01498.x | Citations: 20

Prospectivo, randomizado 110 mujeres 20–35 años buscando MAC NOMAC/E2(2.5 mg/1.5 mg) versus LNG/EE (150μg/30μg) DXA

Short-term effects of an oral contraceptive containing oestradiol valerate and dienogest on bone metabolism and bone mineral density: An observational, preliminary study

Costantino Di Carlo, Virginia Gargano, Stefania Sparice, Giovanni A. Tommaselli, Giuseppe Bifulco, Daniela Schettino and Carmine Nappi

Department of Obstetrics and Gynaecology, University of Naples Federico II, Naples, Italy

Observacional
30 mujeres 21–34 años
Indicación del AHC por médico del servicio
Medición de parámetros metabólicos y DXA a 6 meses

Evolución parámetros metabolismo óseo en 6 meses

Table 2. Urinary pyridinoline (U-PYD), urinary deoxypyridinoline (U-D-PYD), serum calcium, urinary calcium and serum osteocalcin at baseline and after three and six months of treatment with a quadriphasic combined oral contraceptive containing oestradiol valerate and dienogest.

	Baseline	Three months	Six months
U-PYD (nmol/mmol Cr)	33.2 ± 5.2	28.3 ± 4.6*	24.6 ± 4.1*
U-D-PYD (nmol/mmol Cr)	8.1 ± 1.1	$5.8 \pm 0.9*$	4.3 ± 1.0*
Serum calcium (mmol/l)	2.52 ± 0.05	2.57 ± 0.11	$2.58 \pm 0.12**$
Urinary calcium (mmol/mmol Cr)	275 ± 42	282 ± 51	279 ± 45
Osteocalcin (ng/ml)	6.8 ± 0.7	6.7 ± 0.7	6.4 ± 0.6

Cr, creatinine; *p<0.05 vs. baseline; **p<0.01 vs. baseline

BMD basal $(1.041-0.08 \text{ g/cm}^2)$ a los 6 meses = $(1.042-0.11 \text{ g/cm}^2)$

Porcentaje de cambio de los parámetros metabólicos con E4 en el ciclo 3

Parameter	$E_4/DRSP$ n = 17	$E_4/DRSP$ n=19	EE/DRSP n = 20	E_4/LNG n=18	E_4/LNG n=17	E_4/LNG n=18
SHBG	7.9 (26.2)	44.5 (34.1)	306.3 (117.7)	- 69.0 (11.8)	- 64.8 (11.9)	-44.2 (18.0)
CBG	17.1 (16.6)	28.1 (19.6)	170.3 (75.6)	-6.9(17.2)	5.9 (13.3)	25.2 (25.0)
Ceruloplasmin	8.2 (12.2)	16.1 (11.1)	69.0 (22.9)	-5.4(14.6)	0.7 (9.9)	16.2 (6.1)
HDL-cholesterol	8.1 (14.0)	5.6 (11.5)	15.2 (11.3)	- 16.9 (20.7)	- 11.9 (14.1)	- 19.0 (10.9)
LDL-cholesterol	6.7 (20.7)	6.3 (18.3)	- 9.2 (22.1)	-5.9(16.1)	-13.8(20.2)	8.9 (17.9)
Total cholesterol	5.2 (9.8)	5.0 (9.6)	4.9 (10.3)	-12.8(9.1)	- 15.5 (14.4)	-7.6(9.1)
Triglycerides	6.4 (36.7)	10.0 (48.5)	61.2 (51.2)	-24.6 (33.7)	-29.7(26.5)	-27.4 (16.5)
ASAT/SGOT	-4.0 (11.9)	2.0 (22.1)	-9.6 (25.6)	- 11.6 (24.9)	- 12.4 (21.9)	- 13.3 (18.6)
Alkaline phosphatase	- 11.3 (6.6)	- 17.6 (8.6)	- 20.6 (11.8)	-7.5(12.5)	-5.8(14.9)	- 4.7 (12.5)
γGT	-4.8 (18.5)	-8.2 (14.6)	- 11.0 (20.9)	-0.6 (19.8)	3.6 (16.0)	2.7 (17.7)
C-telopeptide	-8.6 (16.8)	- 13.4 (20.2)	-34.9 (17.8)	-6.4(22.5)	-12.4(23.0)	- 22.4 (18.8)
Osteocalcin	- 10.4 (11.1)	- 16.3 (11.9)	-22.3 (11.7)	-4.1 (16.6)	0.8 (19.7)	- 13.0 (16.1)
IGF-I	-5.9 (10.8)	- 11.5 (17.7)	-41.9 (14.0)	1.4 (7.4)	3.4 (20.0)	-8.8(12.0)
IGF-II	-0.7(8.4)	-2.3(13.1)	4.7 (7.7)	-0.7(9.4)	4.8 (18.6)	-2.2(6.9)
IGFBP-1	21.1 (52.3)	0.0 (30.6)	190.9 (245.0)	- 7.5 (46.7)	56.5 (251.5)	41.9 (83.8)
IGFBP-3	7.4 (8.0)	1.4 (11.0)	3.9 (12.6)	1.3 (12.4)	2.0 (12.9)	16.3 (11.0)
GH	100.0 (191.6)	314.1 (722.4)	238.4 (508.4)	173.9 (755.1)	357.5 (750.3)	467.7 (1191.3)

Values are mean (SD) percentage change.

Mawet et al. Unique effects on hepatic function, lipid metabolism, bone and growth endocrine parameters of estetrol in combined oral contraceptives. The European Journal of Contraception and Reproductive Health Care, 2015; 20: 463–475. DOI: 10.3109/13625187.2015.1068934

Conclusiones

- Los AH pueden alterar en mayor o menor medida el metabolismo óseo
- El impacto dependerá de:
 - etapa de la vida
 - tipo de AH
- La evidencia es de mala calidad y a corto plazo
- La elección del MAC debe considerar múltiples factores.
- Nuevas formulaciones podrían ser mejores...

No se nos debe olvidar que estamos comparando una usuaria versus una paciente embarazada